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Abstract—The critical behavior of a four-component Potts model on a hexagonal lattice is investigated
numerically. A modified Wang–Landau method is used with controlled accuracy of estimating the density of
states (DOS). The finite-dimensional analysis of the results confirms the presence of a second-order phase
transition with critical exponents corresponding to the universality class of the two-dimensional four-com-
ponent Potts model.
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1. INTRODUCTION
The theory of second-order phase transitions pro-

vides a classification of statistical physics models with
ferromagnetic interaction over a set of features such as
the spatial dimension of the system, the dimension of
the order parameter, and the symmetry of the ground
state (see, for example, [1]). The universality hypoth-
esis is a consequence of the approach to critical phe-
nomena—a renormalization group theory in which the
details of the Hamiltonian do not affect the critical
exponents and scaling transformations of functions
[2]. The results obtained with this theory were con-
firmed within general theories such as conformal field
theory [3, 4] and the stochastic Schramm–Loewner
evolution theory [5, 6]. There are a large number of
numerical studies that sufficiently reliably reproduce
the critical exponents and do not contradict the uni-
versality hypothesis. Moreover, the results of the study
of nonequilibrium systems are also formulated in
terms of universality [7]. Thus, numerous systems with
various details of the Hamiltonian and small-scale dif-
ferences are well classified by a set of critical exponents
that depends only on the global properties of the Ham-
iltonian. Technically, this can be expressed in such a
way that the amplitude of the correlation length
depends on local properties, but its decrease at large
distances in the neighborhood of a phase transition
does not depend on local properties, and the behavior
at large distances is described by a universal function.

It should be noted that not all quantities are univer-
sal. For example, the values of the critical amplitudes
of universal functions are not universal in and of

themselves, and only some of their combinations are
independent of the details of the Hamiltonian [1]. One
should also carefully interpret universality in reduced
dimension systems in which the finiteness of a system
in one direction can give explicit dependence on both
the size of the system and the type of boundary condi-
tions. Of course, these phenomena are also a conse-
quence of global effects, because the size of the system
and the type of boundary conditions limit the diver-
gence of the correlation length, whereby the depen-
dence on the size of the system becomes explicit.
A remarkable example is given by the expression for
the correlation length in the Ising model on an infinite
strip of finite width L with free boundary conditions at
the edges of the strip, ξ(L) ∝ L/π, which was obtained
in [8] with the help of conformal field theory [3] with
explicit dependence of the correlation length on the
width of the strip. This dependence is universal given
the width of the strip and the type of boundary condi-
tions.

One more refinement of universality comes from
the anisotropy of the system [9]. For example, for the
Ising model on a triangular lattice with the spin–spin
interaction constant J' along one of the lattice direc-
tions and the interaction constant J along the two
other directions, the Binder cumulant, which is a kind
of universal combination of critical amplitudes,
explicitly depends on the anisotropy parameter—the
ratio of the interaction constants q = J'/J [10]. Note,
however, that the interaction anisotropy is a global
characteristic of the Hamiltonian.
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Note also that in some cases even the introduction
of impurities may not change the class of universality.
This can be seen in the example of the two-dimen-
sional Ising model, well studied analytically and
numerically, in which the correlation length acquires
an additive logarithmic correction due to impurities
[11], which leads to logarithmic corrections to ther-
modynamic observables; however, the dependence of
these corrections on the correlation length remains the
same function as that in the case of the absence of
impurities. At the same time, the universality of the
ratio of critical amplitudes is also preserved; their
numerical values also characterize the universality
class [12]. Thus, a relatively low concentration of
impurities does not violate the global properties, and
the model exhibits behavior in the universality class of
the two-dimensional Ising model. This approach also
shows that a change in the universal behavior in this
model can occur only in the neighborhood of the per-
colation phase transition point: a high impurity con-
centration may lead to a percolation geometric cluster,
which changes the critical properties of the system,
and, at an impurity concentration of more than 10 per-
cent, the system exhibits a deviation from the universal
behavior of the Ising model due to the mixing of the
effects of two critical regions [12]. This is also a mani-
festation of the global characteristic—geometric per-
colation—which is described by a different set of criti-
cal exponents and a different functional dependence
of the correlation length.

In recent years, publications have appeared in
which assertions based on numerical simulation are in
contradiction with the above-described universality
picture. In particular, in [13], based on the numerical
simulation of the four-component Potts model on a
hexagonal lattice, the authors argued that the system
undergoes a first-order phase transition. It is known
that the Potts model with local interaction undergoes
a second-order phase transition, which has been
demonstrated analytically [14, 15], numerically [16],
and, what is especially important, experimentally [17].

In Section 3, we present the results of numerical
analysis of a four-component Potts model on a hexag-
onal lattice by a method of direct estimation of the
density of states (DOS), similar to the method used in
[13]. The difference lies in that, to estimate the DOS,
we used a modification of the direct Wang–Landau
method [20], which has higher accuracy of estimating
the DOS, rather than the direct Wang–Landau
method [18, 19]. In addition, to estimate the conver-
gence rate of the DOS calculations, we used the previ-
ously proposed method [21]. We present the results of
estimating critical exponents, which show that the
four-component Potts model on a hexagonal lattice
does not exhibit a deviation from the expected univer-
sal behavior in the class of universality of the four-
component Potts model. The converse and erroneous
assertion of [13] is apparently based on the absence of
the convergence of the DOS estimate to the required
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one due to the known drawbacks of the direct Wang–
Landau method, as well as due to the use of a qualita-
tive method of analysis, which does not have proper
accuracy.

In Section 2, we give a detailed description of the
modified method that we used to carry out a numeri-
cal analysis.

2. MODIFIED WANG–LANDAU METHOD 
WITH CONVERGENCE CONTROL

The Wang–Landau method [18] has become wide-
spread due to the simplicity of its implementation for
classical systems with discrete energy spectrum. The
method allows direct numerical evaluation of the
DOS (more precisely, the formulation of the method
shows that it directly evaluates the entropy). It is based
on an ingenious heuristic idea of taking the transition
between the states of the simulated system propor-
tional to the ratio of the current DOSs depending on
the initial and final energies. We call this transition
probability the Wang–Landau probability. The parti-
tion function of systems with discrete spectrum can be
represented as

(1)

where g(Ek) is the number of states (DOS) with energy
Ek (k = 1, 2, …, NE), NE is the number of energy levels,
kB is the Boltzmann constant, and T is temperature.
Notice that the DOS itself does not depend on tem-
perature, but its knowledge makes it possible to obtain
the free energy as a function of temperature. The
derivatives of the free energy with respect to tempera-
ture give thermodynamic observables such as the
internal energy of the system and the specific heat. To
obtain the free energy as a function of other parame-
ters of the Hamiltonian, for example, the magnetic
field, one needs an extended representation of the par-
tition function with the DOS depending also on the
magnetic field. The method is sufficiently general. It
can also be applied to optimization problems [22] that
allow the representation of the objective function in a
form similar to expression (1).

2.1. The Wang–Landau Algorithm

The algorithm consists of the following steps: (1)
an auxiliary function H(Ek) = 0 and a current value of
the logarithm of DOS log(Ek) = 1, (k = 1, 2, …, NE) are
initialized, an arbitrary configuration of the system is
defined, its energy is calculated, and the initial value of
the parameter f = exp(1) is specified (its meaning will
be explained below); (2) by any Monte Carlo method,
a possible transition to another state is simulated
(most often the Metropolis method is used [19]); (3)
transition from a state with energy Ek to a state with
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energy Em is accepted with the Wang–Landau proba-
bility

(2)

where the current estimation of the DOS (Ek) =
exp log(Ek) is used and the values of the auxiliary func-
tion of the accepted state H(Ek) = H(Ek) + 1 and the
function log(Ek) = log(Ek) + 1 are increased; steps 2
and 3 are repeated until the auxiliary function H(Ek)
becomes f lat with some percent of error, for example
5% [18]; (4) after that, it is recommended [18] to reset
the auxiliary function, H(Ek) = 0, reduce the current
value of the parameter f = , calibrate the current
value of the DOS logarithm log(Ek) = flog(Ek), (k =
1, 2, …, NE), and return to step 2. The process ends
when a certain chosen value of the parameter f, for
example,  f = exp(10–8), is reached.

2.2. Modification: The 1/t Algorithm

For most spin models with discrete energy spec-
trum, such a procedure leads to a good estimate of the
DOS, and therefore the algorithm has been used in a
large number of studies.1 Nevertheless, even in the
early applications of the method, the authors noted
that it leads to an error of a few percent in estimating
the DOS [23]. Accordingly, the results for the thermo-
dynamic functions for relatively large systems may
have significant errors, including errors in the critical
region.

A method to overcome such a drawback—the 1/t
algorithm—was proposed later by Belardinelli and
Pereyra [20]. Theoretical justification of the conver-
gence of the 1/t algorithm was obtained by Liang et al.
[22] on the basis of stochastic approximation theory.

A modification with the use of the 1/t algorithm is
based on changing the behavior of the calibration
coefficient f from the square root law to the law of
inverse proportionality to the computation time, f ∝
1/t, measured in Monte Carlo steps. The coefficient of
proportionality is chosen from the continuity of
matching the two laws after a certain number of steps
2–3–4 of the original Wang–Landau algorithm.

2.3. Convergence Criterion of the DOS

The modified Wang–Landau method makes it
possible in principle to estimate the DOS with arbi-
trary accuracy. However, this requires an astronomical
amount of computation, since the convergence of the
estimate to the expected value is logarithmically slow.

1 The wide popularity of the Wang–Landau method is shown, for
example, by the fact that by the time this article is written the
official website of APS publishers contained a list of citations
from more than 2140 articles.
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Moreover, the convergence estimate of the DOS is not
known a priori.

The solution to this problem was proposed in our
article [21]. We introduced an additional matrix
T(Ek, Em) with elements T(Ek, Em) equal to the fre-
quency of transitions between states with energies Ek
and Em. To estimate this matrix, a counter of the num-
ber of transitions (Ek, Em) between states with ener-
gies Ek and Em is added at each step of the basic Wang–
Landau algorithm. The result of [22] suggests that

(Ek, Em) asymptotically approximates T(Ek, Em).
This assumption was verified by numerical simulation
of Potts models with 2, 3, and 4 components and the
XY model in lattice dimensions 1, 2, and 3 and by com-
paring with the exact results in a number of cases, as
well as with the results of accurate numerical experi-
ments with the use of other Monte Carlo methods. For
the one-dimensional Ising model, the matrix was cal-
culated exactly [21].

In all cases of analytical and numerical investiga-
tions, it was noted that the sought matrix T(Ek, Em) is
doubly stochastic. Its largest eigenvalue is equal to
one. Thus, the deviation of the modulus of the differ-
ence of the largest eigenvalue of the matrix (Ek, Em)
from unity can be used as a criterion of approximation
to the desired DOS. The question of the uniqueness of
this value of the DOS remains open. However, the
startling fact that the initial stage of the original
Wang–Landau method for systems with discrete spec-
trum leads to a good initial estimate of the DOS and
the proven fact that in this case the 1/t algorithm leads
to the desired DOS suggest that such a method of con-
trolling the accuracy of the DOS estimation is suffi-
ciently reliable. Moreover, in the appendix of [21] we
proved that if the estimated matrix (Ek, Em) is close
to a stochastic matrix, then the estimated DOS is close
to the desired one. The proof is based on the fact that,
at step 2 of the Wang–Landau algorithm, we generate
a random walk in the configuration space that satisfies
the detailed balance condition. In this case, each ele-
ment of the transition matrix T(Ek, Em) is a product of
the Wang–Landau probability multiplied by the prob-
ability of a random walk in the configuration space
from state with energy Ek to state with energy Em (for-
mula (2) in [21]). In addition, in [21], by an example
of the one-dimensional Ising model we have shown
analytically that if one uses exact values of the DOS
when constructing the matrix (Ek, Em), then the
transition matrix is doubly stochastic.

Figures 1 and 2 demonstrate the parameter f and
the convergence criterion δ = |1 – λ1| as a function of
the Monte Carlo step t for two lattice sizes. At the first
stage, the parameter f decreases by the exponential law
of the Wang–Landau method [18, 19], which is then
followed by the power-law decay according to the law
1/t [20]. The convergence criterion δ also decreases by
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Fig. 1. Parameter f and the accuracy criterion δ = |1 – λ1|
as a function of the Monte Carlo step t for calculating the
four-component Potts model on a hexagonal lattice with a
linear size of L = 16. The blue color corresponds to the val-
ues of the parameter f, and the green color, to the values of
the accuracy criterion δ.
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Fig. 2. Parameter f and the accuracy criterion δ = |1 – λ1|
as a function of the Monte Carlo step t for calculating the
four-component Potts model on a hexagonal lattice with a
linear size of L = 60. The blue color corresponds to the val-
ues of the parameter f, and the green color, to the values of
the accuracy criterion δ.
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the power law at the final stage of computation,
though not always uniformly.

2.4. Estimates of the Characteristic Times 
of the Algorithm: Tunneling Time and Mixing Time

The characteristic times of the Wang–Landau
algorithm are the tunneling time and the mixing time.

The tunneling time is associated with the initial
stage of the algorithm and characterizes the typical
time when using the histogram flatness criterion. For-
mally, it can be defined as the time of the first visit of
one end of the energy spectrum when the simulation
starts at the other end of the spectrum [24]. This time
is also called the first passage time [25]. Actually, the
Wang–Landau algorithm is based on a random walk
on the energy spectrum. If we did not use the Wang–
Landau probability PWL (see expression (2)) for
accepting each transition, then we would have a ran-
dom walk on the energy spectrum, i.e., on a one-
dimensional lattice with the number of sites L2. In this
case, the time to reach the opposite end of the spec-
trum (the tunneling time) would be proportional to
the square of the number of energy levels, which grows
proportionally to L2 on the two-dimensional lattice. In
other words, a free random walk on the energy spec-
trum of our model yields a tunneling time propor-
tional to the fourth power of the lattice size, L4. In our
case, the difference of the Wang–Landau probability
PWL from unity leads to a more pronounced increase in
the tunneling time, and the numerical estimates lead
to a still faster increase in the tunneling time with an
increase in the lattice size, and for the two-dimen-
sional Ising model we have ttun ∝ L4.8(4).

The second characteristic time, the mixing time, is
important at the final stage of the algorithm when
approximating to the sought DOS. It is defined as the
JOURNAL OF EXPERIMENTAL AN
difference between the first and second eigenvalues of
the transition matrix T(Ek, Em) [26],

(3)

i.e., as a spectral gap.
Numerical experiment shows that, for the two-

dimensional Ising model, the mixing time increases
with the lattice size L according to the power law tmix ∝
L4.28(4).

These estimates show that the Wang–Landau
method requires a huge number of Monte Carlo steps
to achieve the required result, which can be seen from
the scales of the horizontal axis in the convergence cri-
terion graphs given above in Figs. 1 and 2. Preliminary
estimates of the characteristic times for the model
under study do not strongly differ from the times for
the Ising model. It is important that the characteristic
times increase faster than the fourth power of the lin-
ear size L of the lattice.

2.5. Details of the Numerical Experiment
Calculation of eigenvalues λ1 and λ2 of the random

walk transition matrix with the Wang–Landau proba-
bility T(En, Em) were carried out with the help of the
dgeev() function from the Intel® one API Math Kernel
Library LAPACK [27].

For a random choice of spin at step 2 of the algo-
rithm, we used an MT19937 pseudorandom number
generator from the library of [28].

The number of steps between the tests of the histo-
gram H(E) on the uniformity of filling is 106.

Each 1/t-th step of the algorithm was run until at
least NE × 108 ≈ 108 × L2 steps are made at the third
step of the algorithm.

∝
λ − λmix
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| |

t
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Fig. 3. Example of a hexagonal lattice with a linear size of
L = 4 used in simulation. The yellow color indicates addi-
tional sites to demonstrate the organization of periodic
boundary conditions.

Fig. 4. Temperature dependence of the specific energy for
several lattice sizes.
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Fig. 5. Temperature dependence of the specific heat for
several lattice sizes.
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The thermodynamic functions (see expressions
(5)–(8)) were calculated by the Mathematica soft-
ware.

3. RESULTS OF SIMULATION

The Hamiltonian of the Potts model has the form

(4)

where the summation is over all nearest neighbors, the
coefficient 1/2 takes into account that each pair of
spins appears twice in the sum, and δ is the Kronecker
delta. In our case, σi takes four possible values.

The density of states g(EK) (k = 1, 2, …, NE) was
calculated on hexagonal lattices with linear number of
sites L = 6, 8, 12, 16, 24, 30, 36, 48, 54, 60, 62, and 72
(see Fig. 3), on which energy values from –3/2L2 to
zero are implemented.

The application of the method described in Section
2 resulted in a set of numerical data for the DOS g(Ek)
of the four-component Potts model on a hexagonal
lattice. These data were used to calculate the energy E,
specific heat C, and the Binder cumulant BE [29] as a
function of inverse temperature β = 1/kBT by the for-
mulas

(5)

(6)

(7)

(8)

The graphs of energy E/N and specific heat C/N
per site, as well as the graphs of the Binder cumulant,
are given in Figs. 4, 5, and 6, respectively. The number
of sites is N = L2.

The results obtained allowed us to estimate the
values of critical amplitudes. Figure 7 demonstrates
the maximum specific heat as a function of the linear
size L.

It is well known that the models in this universality
class demonstrate multiplicative logarithmic correc-
tions to specific heat [30]. Finite-dimensional analysis
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[31] points to the following dependence of the maxi-
mum specific heat on the size L of the system:

(9)∝ +max 3/2 [1 ...]
(ln )

bLC
L
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Fig. 6. Temperature dependence of the Binder cumulant
for several lattice sizes.
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Fig. 7. Maximum specific heat as a function of the size of
the system. The dotted line is the approximation of the
numerical data.
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with the exponent b = α/ν = 1 and a complex combi-
nation of logarithmic terms in square brackets.2 Here
α and ν are the critical exponents of the specific heat
and the correlation length [1]. The result of approxi-
mation of the numerical data by this formula, pre-
sented in [31], gives a value of b = 1.044(8) for the
exponent in the analysis of the model on a square lat-
tice, which is in good agreement with the analytical
value. In our case, similarly, the result of approxima-
tion of the maximum specific heat is in good agree-
ment with formula (9) with exponent b = 1.042(15). In
[31], the authors also give the result of naive approxi-
mation of the data by the power law without logarith-
mic corrections, which gives an exponent of b =
0.770(8). A similar approximation in our case gives a
close value of b = 0.75(1).

In addition, from the specific heat data obtained
we can determine the shift of the maximum of the spe-
cific heat. It is known that this shift depends on the
lattice size [32],

(10)

and is determined by the correlation length exponent
ν. The approximation of the data obtained for the shift
of the specific heat maximum by formula (10) gives an
estimate of 0.672(11) for the exponent, which is close
to the exact value of ν = 2/3 ≈ 0.667. A similar result
was obtained in [31] from the numerical estimate of
the critical exponent of the correlation length.

Thus, the numerical study of the critical behavior
of the specific heat of the four-component Potts
model on a hexagonal lattice by the modified Wang–
Landau method leads to results similar to those of the
numerical study of the critical behavior of the four
component Potts model on a square lattice by the clus-
ter method [31]. As pointed out in Section 1, this
should have been expected.

The position of the minimum of the Binder cumu-
lant can also be used to estimate the correlation length

2 We do not present cumbersome expressions in brackets. The
details can be found in [31].

− νΔ ∝ 1/T L
JOURNAL OF EXPERIMENTAL AN
exponent; however, this is complicated by nonsingular
corrections to the susceptibility [16].

We also carried out an analysis of the energy distri-
bution function at various temperatures and did not
find indications of the coexistence of phases, on the
basis of which the authors of [13] made a conclusion
about the first-order phase transition in the model
under investigation.

4. CONCLUSIONS
We have shown that a modified version of the

Wang–Landau method with the estimation of the
computation accuracy can be successfully applied to
obtain numerical values of the critical exponents in the
Potts model with a fourfold degenerate ground state.
We have also shown that this model on a hexagonal
lattice exhibits critical behavior, similar to the model
on the square lattice in the universality class [31],
which was previously analyzed in detail numerically.

It is important that, to estimate the density of
states, we used two additional ingredients. The first
one, the 1/t method, makes it possible to avoid distor-
tions in the estimation of the DOS [20]. The second,
the method for estimating the degree of deviation of
the transition matrix from the stochastic matrix,
allows one to control the approximation of the DOS
estimate to the expected one [21]. It is also important
to take into account logarithmic corrections to the
critical behavior [16, 31] in the finite-dimensional
analysis of the critical behavior of thermodynamic
observables.

After completing our investigations, in the current
issue of JETP we found article [33] by the authors of
the same group as those of [13], in which, on the basis
of the analysis of the same model with the help of the
cluster Monte Carlo method, a conclusion was made
about a second-order phase transition. However, the
results of the previous work [13] with the opposite
D THEORETICAL PHYSICS  Vol. 135  No. 6  2022
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conclusion about the first-order phase transition were
not discussed.

In contrast to these works, in which the conclu-
sions were made on the basis of a qualitative analysis of
energy distribution, we have carried out a numerical
evaluation of the critical exponents and compared
them with the results of other authors [31]. We have
presented and described in detail all the necessary
details of the study, which makes it possible to verify
the results presented by us.
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